Finite-difference time-domain-based optical microscopy simulation of dispersive media facilitates the development of optical imaging techniques.

نویسندگان

  • Di Zhang
  • Ilker Capoglu
  • Yue Li
  • Lusik Cherkezyan
  • John Chandler
  • Graham Spicer
  • Hariharan Subramanian
  • Allen Taflove
  • Vadim Backman
چکیده

Combining finite-difference time-domain (FDTD) methods and modeling of optical microscopy modalities, we previously developed an open-source software package called Angora, which is essentially a “microscope in a computer.” However, the samples being simulated were limited to nondispersive media. Since media dispersions are common in biological samples (such as cells with staining and metallic biomarkers), we have further developed a module in Angora to simulate samples having complicated dispersion properties, thereby allowing the synthesis of microscope images of most biological samples. We first describe a method to integrate media dispersion into FDTD, and we validate the corresponding Angora dispersion module by applying Mie theory, as well as by experimentally imaging gold microspheres. Then, we demonstrate how Angora can facilitate the development of optical imaging techniques with a case study. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.6.065004]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...

متن کامل

Novel Four-Channel All Optical Demultiplexer Based on Square PhCRR for Using WDM Applications

Ring resonators have always been referred to as a highly flexible structurefor designing optical devices. In this study, we have designed and simulation a fourchannel optical demultiplexer using square photonic crystal ring resonator. The squarelattice constant for this purpose structure is used. The purposed structure has an averagecrosstalk, transmission coefficient, q...

متن کامل

Ultra-Fast All-Optical Half Subtractor Based on Photonic Crystal Ring Resonators

Abstract: In this paper, we aim to design and propose a novel structure for all-opticalhalf subtractor based on the photonic crystal. The structure includes two optical switches,one power splitter, and one power combiner. The optical switches are made of theresonant rings which use the nonlinear rods for dropping operation. The footprint of thedesigned structure is about...

متن کامل

Ultra-Fast All-Optical Symmetry 4×2 Encoder Based on Interface Effect in 2D Photonic Crystal

This paper deals with the design and simulation of all-optical 4×2 encoderusing the wave interference effect in photonic crystals. By producing 4 opticalwaveguides as input and two waveguides as output, the given structure was designed.The size of the designed structure is 133.9 μm2. The given all-optical encoder has acontrast ratio of 13.2 dB, the response time of 0.45 ...

متن کامل

Novel Design of Optical Channel Drop Filter Based on Photonic Crystal Ring Resonators

In this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. The rods of this structure is silicon with the refractive index 3.46 and the surrounding environment is air with the refractive index of 1.The widest photonic band gap obtained is for filling ratio of r/a = 0.2. The filter’s transmission spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 21 6  شماره 

صفحات  -

تاریخ انتشار 2016